CYCLOPHANES, 33 l) 2,II-DITHIA-[3.3](5,6)INDANO-ORTHOCYCLOPHANE AND 2,11-DITHIA-[3.3](5,6)INDANOCYCLOPHANE: SYNTHESIS, DNNR AND X-RAY STRUCTURE ANALYSIS

6raham Bodwella), Ludger Emstb), Henning Hopfa)*and Peter 6. Jonesc)

a) Institut fur Organische Chemie, b) NMR-Laboratorium der Chemischen Institute, c) Institut fur Anorganische und Analytische Chemie Technische Universitat Braunschweig, Hagenring 30, O-3300 Braunschweig, FRG

Abstract: The title compounds 11 and 10 have been prepared and studied by dynamic lH NMR spectroscopy. In solution, their preferred conformation is the same (probably <u>anti</u>) as for **the nonanellated parent compound. In the solid state, 11 is anti according to an X-ray structure analysis.**

2,11-Dithia-[3.3]orthocyclophane (3) was first reported in 1979 by Au et al.²⁾, who claimed **that the dithiol-dibromide coupling of 1 and 2, in contrast to such couplings in the metaand paracyclophane series, did not require high dilution conditions. This claim was recently** challenged by Lai and Nakamura³⁾, who prepared 3 in order to determine the preferred conformation in solution. These authors concluded that the syn-conformer was of the lowest **energy and that a svn/svn'-interconversion accounted for the observed coalescence of the bridge proton signals in the NMR spectrum at low temperature. More recently Fukazawa and coworkers presented results that suggest that the anti-conformer is preferred and that the dynamic process is in fact an anti/anti'-interconversion4):**

As part of our continuing study of indenocyclophanes⁵⁾ we have prepared 10 and 11, <u>i.e.</u> **derivatives of 3, whose structural properties may shed light on the conformational properties of dithia-orthocyclophanes. The synthesis of these model systems is described in Scheme 1.**

The Wittig reaction of 4^6) gave the diene 5^7) in 98% yield, exclusively as the trans-isomer. **The Diels-Alder reaction of 5 with ethyl propiolate, followed by treatment of the crude mixture with DDQ, gave a mixture of the diesters 6 and 7, which were separated by column**

Scheme 1. i) $(EtO)_2$ POCH₂CO₂Et, NaH; ii) HCCCO₂Et; iii) DDQ; iv) LiAlH₄; v) PB r_3 ; vi) $(H_2N)_2CS$; vii) NaOH.

chromatography (SiO₂, CH₂C1₂). The ratio of 6:7 lay between 1:2.5 and 1:6 and the total yield between 54 and 67%, depending on the reaction conditions⁸⁾. Reduction of 7 with LiAlH₄ in THF proceeded in 94% yield and subsequent bromination with PBr₃ in CH₂Cl₂ **afforded 94% of the dibromide 8. The coupling of 1 with 8 under high dilution finally provided 87% of the cyclophane** 11. Treatment of 8 **with thiourea and then sodium hydroxide quantitatively furnished the dithiol 9 necessary for the synthesis of 10, which was obtained in 90% yield*).**

In the low-temperature ¹H NMR spectra, the methylene protons of the CH₂SCH₂ bridges give **rise to one coupled A8 system in 10 and to two interleaved coupled A8 systems in** 11. **The** rate constants, k_c , at the coalescence temperatures, T_c , were evaluated by the method of **Friebolin et al.g), which takes into account the line widths in the absence of chemical** exchange. The resulting free energies of activation at the coalescence temperature, ΔG_c^* , **for the conformational processes in 10 and 11 are listed in Table 1 and are compared with** the literature value for 3. These data indicate an increase of ΔG_c^* with the number of **anellated five-membered rings.**

The chemical shifts of the protons of the non-anellated benzene ring in 11 and of the methylene protons in both 10 and 11 **are very similar to those in 3 (Table 2). Hence in solution, the most stable conformer of 10 and of** 11 **is analogous to that of 3, which,** according to the arguments of <u>Fukazawa</u> and co-workers⁴⁾, is the <u>anti</u>-conformer.

To determine the preferred geometry of a dithia-indanophane in the solid state, a single-

Compound	3a)	11 _{b, c}		10 _c
$\Delta\nu_{AB}$ [Hz]	96.0	106.6	94.3	107.4
J_{AB} [Hz]	14.7	15.0	15.0	15.0
$v_{1/2}$ [Hz]		\approx 3.5	\approx 3.5	3.3
T_c [K]	(225)	$247 + 8$	$247 + 8$	$258 + 4$
ΔG_c * [kJ/mol]	46.0	48.9 ± 1.9	48.9 ± 1.9	$51.1{\pm}0.8$

Table 1. Parameters in the variable-temperature 400 **MHz lH NMR spectra** of the CH₂ groups in 3, 10 and 11.

a) From ref. 2; AuAB converted from 90 to 400 MHz observation frequency; T, not comparable to that of 10 and 11.

b) The larger error in T_c is caused by the overlap of the two AB spectra.

c) Solvent: CD2Cl2/CDCl3 (3/l, v/v).

Table 2. ¹H NMR chemical shifts in 3, 10 and 11 (CDCl₃, ca. 25^oC). **Compound 3a)** 11 10

δ[(CH ₂)3]	$\overline{}$	2.91, 2.08	2.90, 2.07
8(CH2S)	3.44	3.46, 3.41	3.43
δ(H _{Ar} , <u>ortho</u>)	7.61	7.60	
δ(H _{Ar} , <u>meta</u>)	7.27	7.27	
δ(H _{Ar} , isol.)	$\overline{}$	7.45	7.45

a) **From ref. 3.**

crystal X-ray structure analysis was carried out with 11. As shown in Fig. 1, this orthocyclophane - like its parent compound 2,11-dithia[3.3]paracyclophane4) - is anti-configurated. Provided, therefore, that there are no special geometric effects (such as bulky substituents in the molecular bridges) we conclude that this spatial arrangement is generally preferred by phanes of the type 3.

Acknowledoements: We wish to thank the *Deutscher Akademischer Austaoschdienst,* **the** *Deutsche Forschungsgemeinschaft,* **the** *Natural Sciences and Engineering Research Counci7 of Canada,* **and the** *Fonds der Chemischen Industrie* **for their generous support of our work.**

References and Notes

- **1) Part 32: H. Hopf, C. Mlynek,** *J. Org. Chem.,* **in press.**
- **2) M.-K. Au, C.W. Mak, T.L. Chan,** *J. Chem. Sec., Perkin Trans. I 1475* (1979).
- *3)* **Y.-H. Lai, M. Nakamura,** *J. Org. Chem. 53, 2360* (1988).
- *4)* **T. Okajima, Z.-H. Wang, Y. Fukazawa,** *Tetrahedron Lett. 30, 1551* (1989).
- *5)* a) R. **Frim, M. Rabinovitz, G. Bodwell, H. Hopf,** Chem. Ber. 122, 737 (1989);
- **b) H. Hopf, F.-W. Raulfs, D. Schomburg,** *Tetrahedron 42, 1655* (1986).
- 6) J.B. **Brown, H.B. Henbest, E.R.H.** Jones, J. *Chem. Sot. 3634* (1950).
- 7) a) B.G. Kovalev, N.P. Dormidontova, A.A. Shamshurin, J. Org. Chem. USSR 5, 1722 (1969);
b) H. Favre, J.P. Lapointe, Can. J. Chem. 49, 3851 (1971).
- 8) All new compounds were fully characterized by their spectroscopic and analytical data.
- 9) H. Friebolin, H.G. Schmid, S. Kabuß, W. Faißt, Org. Magn. Reson. 1, 147 (1969).
- 10) Crystal data for 11: monoclinic, $P2_1/n$, $a = 990.3(4)$, $b = 1133.7(5)$, $c = 1421.2(7)$ pm, $\beta = 95.49(3)$, $R = 0.041$ for 2142 unique observed reflections. Full details of the structure determination have been deposi Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, FRG; any request for this material should quote the full literature citation and the reference number $CSD - 540.57$.

Fig. 1. X-ray structure analysis of 11^{10}

(Received in Germany 4 September 1989)